Binary treeEdit
Accessing child elements
To access the children of an element n.
For a 1-indexed tree
1 n
2 3 2n 2n + 1
4 5 6 7
8 9 10 11 12 13 14 15
For a 0-indexed tree
0 n
1 2 2(n + 1) - 1 2(n + 1)
3 4 5 6
7 8 9 10 11 12 13 14
Accessing parent elements
1 n
2 3 2n 2n + 1
4 5 6 7
8 9 10 11 12 13 14 15
0 n
1 2 2(n + 1) - 1 2(n + 1)
3 4 5 6
7 8 9 10 11 12 13 14
Accessing parent elements
To access the parent of an element n.
For a 1-indexed tree
1
2 3
4 5 6 7 n / 2
8 9 10 11 12 13 14 15 n
For a 0-indexed tree
0
1 2
3 4 5 6 (n - 1) / 2
7 8 9 10 11 12 13 14 n
Rendering a binary tree
1
2 3
4 5 6 7 n / 2
8 9 10 11 12 13 14 15 n
0
1 2
3 4 5 6 (n - 1) / 2
7 8 9 10 11 12 13 14 n
Rendering a binary tree
See:
- Tidier drawings of trees: http://emr.cs.iit.edu/~reingold/tidier-drawings.pdf