Binary treeEdit
Accessing child elements
To access the children of an element n.
For a 1-indexed tree
              1                             n
       2             3                2n      2n + 1
   4      5       6       7
8    9 10   11  12  13 14  15
For a 0-indexed tree
              0                                  n
       1             2                2(n + 1) - 1      2(n + 1)
   3      4       5       6
7    8 9    10  11  12 13  14
Accessing parent elements
              1                             n
       2             3                2n      2n + 1
   4      5       6       7
8    9 10   11  12  13 14  15
              0                                  n
       1             2                2(n + 1) - 1      2(n + 1)
   3      4       5       6
7    8 9    10  11  12 13  14
Accessing parent elements
To access the parent of an element n.
For a 1-indexed tree
              1
       2             3
   4      5       6       7           n / 2
8    9 10   11  12  13 14  15         n
For a 0-indexed tree
              0
       1             2
   3      4       5       6           (n - 1) / 2
7    8 9    10  11  12 13  14         n
Rendering a binary tree
              1
       2             3
   4      5       6       7           n / 2
8    9 10   11  12  13 14  15         n
              0
       1             2
   3      4       5       6           (n - 1) / 2
7    8 9    10  11  12 13  14         n
Rendering a binary tree
See:
- Tidier drawings of trees: http://emr.cs.iit.edu/~reingold/tidier-drawings.pdf